Diffusion
Lee, Seul, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Yuxing Peng, Saee Paliwal, Weili Nie, and Arash Vahdat. 2025. “GenMol: A Drug Discovery Generalist with Discrete Diffusion.” arXiv. https://doi.org/10.48550/arXiv.2501.06158.
Diffusion
Schneuing, Arne, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du, et al. 2024. “Structure-Based Drug Design with Equivariant Diffusion Models.” Nature Computational Science, December. https://doi.org/10.1038/s43588-024-00737-x.
Diffusion
Watson, Joseph L., David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E. Eisenach, Woody Ahern, et al. 2023. “De Novo Design of Protein Structure and Function with RFdiffusion.” Nature 620 (7976): 1089–1100. https://doi.org/10.1038/s41586-023-06415-8.
GFlowNet
Bengio, Emmanuel, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. 2021. “Flow Network Based Generative Models for Non-Iterative Diverse Candidate Generation.” arXiv. http://arxiv.org/abs/2106.04399.
GFlowNet
Shen, Tony, Seonghwan Seo, Grayson Lee, Mohit Pandey, Jason R. Smith, Artem Cherkasov, Woo Youn Kim, and Martin Ester. 2024. “TacoGFN: Target-Conditioned GFlowNet for Structure-Based Drug Design.” arXiv. http://arxiv.org/abs/2310.03223.
Transformer
Luo, Shitong, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W. Coley, and Jianzhu Ma. 2024. “Projecting Molecules into Synthesizable Chemical Spaces.” arXiv. http://arxiv.org/abs/2406.04628.